
  
| Plerou et al. | PRECISION MEDICINE | VOL 1| NUMBER 1| 2016 | 1-6 

 

1 

 

 

 
 

 
www.e-precisionmed.com/pmj  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
        

   
Received 29 March 2016; Revised 21 April 2016; Accepted 29 April 2016; Published 8 May 2016 

 

 

 

 

 

 
 

*Corresponding author: tplerou@ionio.gr, papadob@civil.duth.gr  

 

FUZZY LOGIC MODELS IN EPIDEMIC CONTROL   

      

         

 

 
Antonia Plerou1*, Elena Vlamou2, Basil Papadopoulos3 
1Bioinformatics and Human Electrophysiology Laboratory. Department of Informatics Ionian University, Corfu, GREECE 
2Department of Civil Engineering Democritus University of Thrace Xanthi, GREECE 
3Department of Civil Engineering, Democritus University of Thrace, Xanthi, GREECE 

 
 

 

ARTICLE 

_______________________________ 
 

HIGHLIGHTS 
 

 
This article provides a brief account of fuzzy set theory 

applied to explain epidemiological problems 
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 ABSTRACT 

 
 
 

 

 

 

The mathematical study of epidemics is essential for a 

better perception of their evolution and control potential. 

The typical deterministic mathematical models do not 

provide subjective modeling of these phenomena. The 

application of fuzzy set theory in order to model 

epidemiological problems and overcome this issue is 

suggested as an efficient predictive procedure for the 

epidemiology of infectious diseases. Although this is a 

recent research field, authors objective is to provide a 

review of the state of the art of fuzzy logic theory 

implementation in epidemiology. Findings suggest that fuzzy 

sets implementation in epidemiology is a really promising 

field of research and specify the future stages of fuzzy sets 

application in epidemiology. 
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INTRODUCTION 
 
The basic aspect of medicine is intervention. However, in order to intervene, one must predict the natural 

course of a system in the absence of intervention and to predict the evolution of these systems after the 

proposed intervention. Mathematical epidemiology is very recent and it is blending mathematics and 

medicine science. Traditional expert systems based on binary logic have been used successfully as 

diagnostic decision tools through the use of probability theory and information sequential processing are 

responsible these method limitations in several medical applications. Despite fuzzy logic potential in 

dealing with uncertainties, limited applications of fuzzy logic concepts in epidemiological problems have 

been obtained so far. The development of numerous mathematical methods and concepts lead to 

practical applications of fuzzy logic. 

 
Epidemics in numbers 

Epidemics of infectious diseases afflict millions of people worldwide. Namely, over than 40 million people 

throughout the world are infected with human immunodeficiency virus (HIV) in accordance with to the 

World Health Organization, statistics in 2001. Additionally, more than 300 million people were infected 

with sexually transmitted diseases other than HIV every year worldwide each year in accordance with World 

Health Organization in 1996. Almost 8 million people get sick and 2 million people are dying because of 

tuberculosis every year according to World Health Organization data in 2000. The optimal way to allocate 

prevention funds, in the case that the resources are unlimited, is to afford money in order to reduce the 

disease transmission. However, in the case that resources are constrained the challenge is to minimize 

the growth of an epidemic allocating properly the limited prevention funds (Brandeau, Zaric, & Richter, 

2003). 
 
Disease diagnosis 

Disease diagnosis is related to several levels of imprecision and uncertainty, notably in epidemiological 

studies. A single disease may occur quite differently in different patients and with different disease status. 

Furthermore, a single symptom may suggest several diseases, and the occurrence of different diseases in 

a single patient may unsettle the typically expected symptom pattern. This is possible to cause a 

formidable amount of fuzziness and vagueness in the interpretation of effect measures of covariates of 

interest. A typical general aspect of the disease is that health and disease are opposed and that they are 

dual and contradictory attributes. Innovative fuzzy logic methods consider health and disease as 

supplementary situations. Uncertainty in epidemiology is not limited to random variations. Therefore, 

alternative approaches from other domains of fuzzy logic are used, like linguistic models, fuzzy decision 

making, fuzzy clustering, possibility distributions, to deal with some of the epidemiology and public health 

problems (Massad, Ortega, Struchiner, & Burattini, 2003). 

 
Fuzzy logic 

Fuzzy logic is a superset of conventional (Boolean) logic, developed in order to access the concept of 

partial truth (Massad et al., 2003) Fuzzy logic is related to an inference morphology that allows 

approximate human reasoning abilities to be applied to knowledge-based systems. The fuzzy logic is an 

approach to computing based on “degrees of truth” instead of the classic “true or false” (1 or 0) Boolean 

logic. Natural language is hard to be to assigned into the absolute terms of 0 and 1. Fuzzy logic comprises 

0 and 1 as extreme cases of truth but also contains the various states of truth in between so that 

(Kawatra, 2006) Fuzzy logic is applied to several fields like control theory and artificial intelligence. 

Namely, a fuzzy system advantage is 1.  The capacity to represent inherent uncertainties of the human 

knowledge with linguistic variables; 2.  A simple interaction with the expert of the domain with the 

engineering designer of the system; 3.  An easy interpretation of the results, because of the natural rules 

representation; 4.  An easy extension of the base of knowledge by adding new rules; 5.  Robustness in a 

relation of the possible disturbances in the system (Vieira, Dias, & Mota, 2004). 

 
Fuzzy inference systems 

Fuzzy inference systems (FIS) are extensively used for process simulation or control. They can be designed 

either from expert knowledge or from data. The fuzzy inference mechanism consists of three stages. In the 

first stage, the values of the numerical inputs are mapped with the use of a function with accordance to a 

degree of compatibility of the respective fuzzy sets and this operation is named fuzzification. In the second 

stage, the fuzzy system processes the rules in accordance with the firing strengths of the inputs. In the 

third stage, the subsequent fuzzy values are altered again into numerical values. This operation is named 

defuzzification. Essentially, this procedure enables the use of fuzzy categories in the representation of 

words and abstracts ideas of the humans in the description of the decision-making procedure (Viharos & 

Kis, 2014). 
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Mathematical modeling 

Mathematical models are always subject to inaccuracies related to the nature of the variables and 

parameters involved. In these models, the estimation of the parameters is usually based on statistical 

methods (Regina Siqueira Ortega, Cesar Sallum, & Massad, 2000). Mathematical modeling of infectious 

diseases is a tool to investigate the mechanisms for the occurrence and spread of diseases and foresee 

the future direction in order to control an epidemic. The earliest mathematical epidemic model is by Daniel 

Bernoulli. The results showed that the universal vaccination could raise the life expectancy. McKendrick 

and Kermack in 1927 formulated a simple deterministic model and successfully predict the behavior of 

outbreaks in many recorded epidemics using mathematical epidemic modeling (Anderson, 1991). 

 

METHODS 
 
Stochastic epidemic models 

The epidemic process has random nature. Stochastic models are used for estimating the probabilistic 

quantities for the outcome events, like the probability distribution of extinction time or of final outbreak 

size and the associated mean.  A stochastic model has a random variable and is a method in order to 

estimate probability distributions of possible outcomes. Stochastic models depend on the chance 

variations in risk of exposure, disease, and several illness dynamics. 

 
The SI Model 

Analysis of epidemic models is a vital research topic.  The simplest classical model to describe the directly 

transmitted diseases with the interaction between susceptible and infected individuals is the SI model 

without neither vital dynamics (the rates of birth and mortality are not included), nor immunity, nor 

additional disease fatality rate. The model can be represented by the diagram to follow: 

S I   
 

Figure 1: SI model diagram where the flow between the susceptible and infective compartments are 

explicit. 

The classical normalized differential equations which describe such dynamics are given by:  

     

dS
SI

dt
 

     -       

dI
SI

dt


 
 

where 1S I  , S is the proportion of impressionable individuals, I is the proportion of infected 

individuals at each instant and is the transmission coefficient of the disease. The basic assumption in this 

formula is that the population is homogeneous. Namely, every infected individual transmits the disease 

with the same chance, given by the real number β. So, the number of infected individuals at any instant t is 

given by: 
t

t

o o

e

S I e








 


 

  

where So and Io is the initial conditions. Both concepts of impressionable and infectious are unclear in the 

sense that there are different degrees in susceptibility and infectivity among the individuals of the 

population. Such differences can arise, for example, when we consider the population’s distinct habits and 

customs, different degrees of resistance, etc. Thus, more realistic models consider different degrees of 

impressionability and/or infectivity of the individuals. The parameter β (presenting the chance that in one 

contact between an impressionable and an infected individual the transmission of the disease occurs) is 

considered as a fuzzy number (Massad et al., 2003). 

 
The SI fuzzy model 

The population heterogeneity is assumed to be given by the parasite load of infected individuals. Thus, the 

higher the parasite load, the higher is the possibility of disease transmission. Namely, it is hypothesized 

that β = β(ν) measures the chance of a transmission to occur in a meeting between a susceptible and an 

infected individual with an amount of pathogens ν. So, several values of β are more likely comparing to 

others and that change β into a membership function of a fuzzy number. To obtain the membership 

function β it is considered that while a number of pathogens in an individual is rather low, the possibility of 

transmission is insignificant. Consequently, there is a minimum amount of pathogens νmin needed to 

cause disease transmission. Furthermore, for a specific amount of pathogens νM, the chance of disease 

transmission is maximum and equal to 1. Finally, it is assumed that the individual’s amount of pathogens 

is always limited by νmax for every disease. For the fuzzy subset, the following membership function is 

defined: 
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where νmin represents the minimum amount of pathogens needed for disease transmission to occur. This 

value is perceived as the one that provides the susceptibility of a particular population. Actually, as higher 

the νmin value, the higher the amount of pathogens needed for transmission to occur. Namely, the 

populations have a low susceptibility to the disease (Massad et al., 2003) (Barros, Leite, & Bassanezi, 

2003). 
 
The SIS model 

The simplest model to describe a disease in which the individual recovers but does not develop any kind of 

immunity, i.e. becomes susceptible again, is presented. 

   
S I S  

 
 

Figure 2: SIS model diagram showing the flow between susceptible and infective compartments. 

It is considered that the flow of an individual from S class to I class occurs at a rate β depending only on 

the contact of a susceptible with an infected individual and that the individual recovers at a rate γ, 

returning to the susceptible condition. The dynamical system is described the differential equations system 

that follows: 

   

   
dS

SI I
dt

   
   -    

  
dI

SI I
dt

  
 

 

where 1S I  , S is the proportion of impressionable individuals, I is the proportion of infected 

individuals, β is the contact rate and γ the recovering rate. Consequently, γ −1 is the average period of 

infectiousness (Massad et al., 2003). 

 
The SIS fuzzy model 

As in the SI fuzzy model, β = β(ν) and the individuals’ recovery rate (γ) is also a function of the parasite load 

is assumed. The higher the parasite load, the longer it will take to recover from infection. Consequently, γ 

should be a decreasing function of ν: 

 0  1
( ) 1

max




 
 

 

   
 

where γ0 > 0 is the lowest recovery rate. So: 

dI
 = βI 1 1

dt





  
   

      
Thus, the equilibrium solution I∗ is obtained  
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And this occurs when β ≥ γ. From the hypothesis of our model, β and γ depend on the parasite load ν. In 

this way, the number of infected people, at each instant of time, is given by  
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   




 
  
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So, as in the SI fuzzy model, the average number of infected individuals is provided from FEV [I(ν,t)] or E 

[I(ν,t)]. Thus, the objective is to evaluate the stability of the disease. To study the temporal evolution of the 

number of infected people, i.e., whether the number of infected increases indefinitely or not, the stability of 

the equilibrium points should be evaluated.  
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Making  

0
dS

dt


and 

0
dI

dt


 the equilibrium points 
 1  1 ,0P 

  and 

2  1  ,P
 

 

 
  

   for the 

system are reserved. 

 
Deterministic epidemic models  

The transition rate from one class to the other one is featured by derivative mathematically. Assuming that 

the population size is differentiable with respect to time, in the limiting of a large population, the time 

evolution of behavior of each subgroup can be approximated by the deterministic dynamics. 

 
SIR Model 

In 1927 Kermack and McKendrick created a model in which they considered a fixed population of three 

compartments only: susceptible; S(t) infected, I(t); and removed, R(t). The compartments used for this 

model comprises of three classes: S(t) is   representing the number of individuals not yet infected with the 

disease at time t, or those susceptible to the disease. Additionally, I(t) denotes the number of individuals 

who have been infected with the disease and is possible to spread the disease to those in the susceptible 

category. Finally, R(t) is the compartment used for individuals who have been infected but detached of the 

disease, either due to immunization or to passing away. These individuals unable to be infected again or to 

transmit the infection to others. 

 

The flow of this model may be considered as follows:  

   S I R   

With the use of a fixed population,
      N S t I t R t  

 , Kermack and McKendrick result in the 

following equations: 

 

dS SI

dt N


 

      -      

dI SI
I

dt N


 

      -     

dR
I

dt
 

 

 

for the standard stochastic SIR epidemic model.  

 

Similarly, with the deterministic common epidemic model a closed homogeneous uniformly mixing 

community is assumed and n denote the size of the community. The S(t), I(t) and R(t) denote the number 

of susceptible, invectives and recovered at time t, respectively, and suppose that at time t = 0 these 

numbers are given by S(0) = n−m, I(t) = m and R(0) = 0. The dynamics of the model are defined as follows: 

Infectious individuals have “close contact” with other individuals rarely in time at continuous rate λ, and 

each such contact is with a randomly selected individual, all contacts of different infective being defined to 

be mutually independent. The term “close contact” denotes a contact close enough to result in infection 

whether the other individual is susceptible, otherwise, the contact has no effect. Any susceptible receiving 

such a contact is instantly infected and begin spreading the disease in accordance with the equal rules. 

Infected individuals continue to be infectious for a random time I (the infectious period) and thereafter 

they pause of being infectious, recover and become immune to the disease. The infectious periods are 

defined to be independent and identically distributed and the have distribution FI and mean E(I) = 1/γ. The 

epidemic starts at time t = 0. As the epidemic evolves, in accordance with the above-mentioned rules, it is 

possible new individuals to get infected and finally recover, until the first time T when there is no infective 

in the population. Then no more individuals could get infected and that implies that the epidemic ends. 

The final state of the epidemic is described by the ultimate number R(T) infected (note that 
    0I T 

 , 

so 
   S T n R T 

 make up the rest of the community). The final number of infected R(T) consist of m 

who were initially infected plus Z, who were infected during the outbreak  (Britton, 2010). 

 
Fuzzy decision making in epidemiology 

Making decisions is essential in public health where decisions frequently are relevant for millions of 

people. In the field of vaccination strategy design, decision making concerning the target population for the 

immunization program, the proportion of impressionable to be vaccinated, the optimal age to immunize 

children and the nature of the strategy, e.g. selective or indiscriminate, are cases of the variables to be 

optimized, subject to a set of constraints. 

 

The objective of decision making is the study of the way decisions are made in order to become more 

effective and essential. Models of human decision making, in general, comprise the aggregation or 

constraint criteria. In the case that this cannot be modeled crisply, a decision could be defined as the 

intersection of fuzzy sets representing either objectives or constraints. The degree of membership of an 
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object in the intersection of two fuzzy sets, namely, the ‘‘fuzzy set decision’’ is determined with the 

minimum or the product operator procedure. Decision-making under   risk conditions has been modeled by 

probabilistic and game theories, nevertheless fuzzy decision theories challenge is to deal with the 

imprecision of human preferences.  

 
Fuzzy probabilities of epidemic events 

The majority of significant application of fuzzy logic in epidemiology are related with the field of linguistic 

models. These methods are additionally used for a large amount of uncertainties characteristic of 

epidemic problems and to solve problems that   probability theory fails to solve efficiently. Fuzzy logic and 

probability theory, although analogous in particular in perspectives, were designed to deal different tasks. 

The values of probability measure have been classically defined as a number between 0 and 1 that 

preserves the additive property. Fuzzy probability, in turn, is a generalization of interval probability in which 

the probability value is bounded by a fuzzy set.  

 

CONCLUSION 
Fuzzy logic concepts are applied to population biology with an emphasis on epidemiological problems like 

causal studies, epidemic models, and designing of vaccination strategies. The objective of the present 

paper is to provide a review on the present state of fuzzy logic applications in epidemiology. Alike to 

several biomedical fields of fuzzy logic applications, the key advantage of fuzzy methods as applied to 

epidemiology is the simulation of human cognitive processes. Biomedical applications of fuzzy logic 

methods in spite of their potential in problem-solving  haven’t received adequate attention and, therefore, 

additional research need to be done in the field of fuzzy epidemic control (Massad et al., 2003). 
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